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Bimodality and transient trimodality for Brownian particles in shear flows:
A path-integral approach
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The problem of Brownian motion in shear flows is analyzed using a path-integral approach and a
piecewise-linearized velocity profile. In this way, the complete two-dimensional conditional probability
distribution is found and the unimodal-bimodal transition in the longitudinal distribution is consistently
described. A remarkable aspect is the appearance of a transient trimodal regime.

PACS number(s): 47.15.—x, 02.50.+s, 05.40.+j, 47.50.+d

Quite recently, the phenomenon of a Brownian particle
moving in a medium with shear flow has been addressed
in order to describe the faster-than-diffusive motion of
tracer particles [1]. For the case of bidimensional sys-
tems, the model equation considered has the form

3, P(x,y,t|x0,p0,t0)=—V(p)3,P+D3 P, (1

where P(x,y,t|xq,79,¢) is the conditional probability to
reach the point (x,y) at time ¢, starting from (x4,y,) at
to; V(y) is the shear velocity field and D is the diffusion
coefficient associated to the diffusive motion in the y
direction. It is known that for a linear dependence of the
velocity field on the coordinate y, the mean-square dis-
placement grows in time as {x(z)?)~¢3 [2,3]. For ran-
dom velocity fields and within the continuous-time
random-walk formalism, the exact asymptotic behavior
of the first few nontrivial moments of the displacement
has been found. This analysis has provided information
about the scaling form for the marginal conditional prob-
ability P(x,t)« fdyP(x,y,tlxo,yo,tO) [4]. The special
case of power-law shear flows, V(y)x<sgn(y)y?, was re-
cently considered. It was found that, varying the power
B from B=1 to B=0, the marginal conditional probabili-
ty P(x,t) exhibits a transition from unimodal to bimodal
behavior when a §&-function-like initial condition,
P(xq,p0,t0) <8(x)8(p,), is assumed [5]. By means of an
effective velocity approximation, the critical value of B
was estimated to be B, =9/8, at variance with a numeri-
cal result of B, =0.75.

In this paper, we present an alternative way to solve
Eq. (1) through a path-integral approach [6,7]. It is well
known that, when the associated Lagrangian is, at most,
quadratic in coordinates and velocities, the path-integral
representation for the conditional probability can be ex-
actly integrated, for instance, by means of an expansion
of the paths around a reference one (“classical,” “macro-
scopic,” or “most probable” path [7]). However, for the
case of the power-law shear flow considered in Ref. [5], it
is far from trivial to obtain the reference trajectory and,
moreover, the above-mentioned path expansion does not
stop at the second order in the coordinates. For this
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reason, we have adopted an alternative form for the ve-
locity field, according to

ey/a+(1—e*), ea<y,

V(y)=v,iy/€a , —ea<y<ea, (2)

ey/a—(1—e?), y<ea,

where a and € are constants (0<e=<1). For €e=0 and
€=1, the form of the velocity field of Eq. (2) coincides
with the power-law shear flow of Ref. [5] for the limit
values =0 and B=1, respectively. For intermediate
values of € and 3, it is expected to be a convenient mimic
of the power-law field. As a matter of fact, this lineariza-
tion is the first step in a systematic polygonal approxima-
tion to the power-law velocity field, to be tested numeri-
cally in a forthcoming paper [8]. Such a piecewise-
linearized version of the velocity field allows us to obtain
the reference path and to perform the path integration by
means of the path expansion procedure.

It is worth remarking that the Langevin equations
equivalent to the Fokker-Planck equation (1), correspond
to an uncorrelated additive white noise acting on the y
variable [9]. The corresponding expression for the path-
integral representation of the conditional probability is

P(xyyytlx():yO’tO)
= [ D(x1D[y1DIp1DIqlexp{ —S[x.p.p.q1} ,  (3)

where p and g are the conjugate ‘“momentum” coordi-
nates to x and y, respectively. The “action” §[x,y,p,q] is
given by

e?[x,y,p,q]zfl;ds[ip(s)[)'c(s)-V(y(s))]
+ig(s)y(s)+Dq(s)} , 4)

The Gaussian dependence on g allows us to integrate over
this variable. The integral over p can also be done, lead-
ing to a 8-function-like functional, so that the functional
integration over the x variable can be performed. We
consider an initial condition given by P(xq,y0,20)
=8(x,)8(yy) with t,=0; therefore, the notation can be
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simplified by denoting P(x,y,t) =P(x,y,t|0,0,0). Using
a Fourier representation for the resulting delta function
in x and V(y), we obtain

dk

V2T

P(x,y,0)= [ —Z=explik (x —x0)1P(y,t]y0,0),

— f otds

The variation of the Lagrangian-like function in the ex-
ponent of the second path integral in Egs. (5) yields the
Euler-Lagrange equations for the most probable trajecto-
ry as

§—i2Dkd,V(y)=0, 6)

to be solved with the boundary conditions y(s=0)=0
and y(s=t)=y. It is clear that the solutions to Eq. (6)

(5)

Py,0= [ Dlylexp V() + 553 (52 H .

1262 172

dvie?

_ 7

P(x,y,t)=(4mda*t)" "2 exp di

where 7=y /a is a scaled coordinate and d =D /a?. Fory

J

dk

V2

2
P(x,y,t)=(4mda’t)" ' exp —f‘z 1420

Xexp | —k?

with

d(1;€)=en*+6€(1—€*)n?
+4(1—2e*)(1—€*)n—3e(1—€?)?,

|— €

Y(x,m;€)=x —vyt7 2

n

§+(1—62)

For e=1 the above expression reduces to the one given
by Eq. (7), as could be expected in complete agreement
with the result in Ref. [3]. In this case, P(x,y,t) is a mul-
tivariable Gaussian function, whose width increases as
t3/2 in the x direction and has normal diffusive behavior

J

_

4dt

4dt

2
~_n -1/
P(x,y,t)= p 2(47'ra'a2t) 2 exp Some)

Vo

In order to correct the jump arising at y =ea due to the
approximation above, we include in the last expression
the factor P(x,ea ~,t)/P(x,ea™,t) and normalize the
whole distribution to unity.

In Fig. 1, we show the conditional probability P(x,y,?)
for fixed values of € and ¢, and y >0. In part (a), the case
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will correspond to complex trajectories. However, this
fact introduces no major difficulties, as we can follow a
similar approach as in Ref. [10], where this problem has
been tackled and a WKB-like approach justified. In the
present situation, the simplest way to perform the path
integral in Eq. (5) is to use in Eq. (6) the boundary condi-
tions in order to fix the real part of the trajectory, as the
imaginary part becomes automatically determined by this
result. The trajectory just found can be used as the refer-
ence path in the usual path expansion procedure [7].

Due to the symmetry of the problem, P(x,y,t)
=P(—x,—y,t), and it is sufficient to consider the posi-
tive values of y. As a consequence of the discontinuity in
the potential V(y), the reference trajectory discussed
above is split according to the value of y being smaller or
greater than ea. This implies that P(x,y,?) is also split in
two functional forms. For y < e€a, we have

2

—ﬁ(x—uont/Ze)z , ()]
0

> ea, the conditional probability is given by

172
€

n

(1—€?)

7

o(n;e)+ikp(x,m;€) |, (8)

1272

[
in the y direction.

According to a numerical analysis of the integrand in
Eq. (8), it seems to be a reasonable approximation to
neglect the second term in the prefactor square root.
This is completely justified for small values of . On the
other hand, when ¢ is large it would be more adequate to
neglect the first term in the square root, leading to an ex-
act solution in terms of the parabolic cylinder function
D, ,(z). However, due to the compensation introduced
by the slow damped oscillations of the integrand, the
asymptotic behavior of this solution coincides with the
result of neglecting the second term in the prefactor
square root. A thorough discussion of the validity of
such an approximation and its extensions will be given
elsewhere [8]. Within this approximation, Eq. (8) reduces
to

2 2

n
vodt?

dt
ep(n;€)

(10)

1/2
1 exp PY(x,m;€)?

[

of a large value of € is depicted and the quasi-Gaussian
form of P(x,y,t) is clearly seen. On the other hand, in
part (b), for € lower than a critical value €, to be defined
later, we observe the appearance of a richer structure.
We see that there is a hump located at the origin, as well
as an additional hump, approximately situated at x =vqt.
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FIG. 1. The conditional probability P(x,y,t) for fixed time,
t=1, and positive values of y. (a) €=0.9; (b) €=0.6. Here and
in the following figures, a=1,d =1, and v, =1.

It is clear that there is a third hump symmetrically locat-
ed with respect to the last one, i.e., in the lower plane and
approximately centered at x = —vt.

The trimodal behavior observed for P(x,y,t) in the
(x,y) plane explains the origin of bimodality in the mar-
ginalized conditional probability P(x,¢). In order to get
this marginal probability, we must integrate P(x,y,t)
over y. For —ea <y <ea, the integration can be analyti-
cally done in terms of known functions, while we must
resort to numerical procedures to evaluate the remaining
contribution.

In Fig. 2, the marginal conditional probability P (x,t)
is depicted for fixed values of € and several values of t.
Part (a), corresponding to the results for a large value of
€, shows a unimodal behavior preserved as time elapses,
in agreement with previous results [3,5]. Part (b), corre-
sponding to results for € <¢€,, makes it evident that a bi-
modal behavior appears at large times. This supports the
arguments presented in Ref. [5], about the existence of a
transition between the two regimes when changing the
shear velocity profile. At variance with those results, the
present approach allows us to obtain the complete condi-
tional probability P(x,y,t) as well as the marginal one,
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FIG. 2. The marginal conditional probability P(x,t), as a
function of the scaled variable x /vyt. (a) €=0.9 and t=0.2,0.5,
1.0. For this value of €, the behavior is clearly unimodal at
every time. (b) €=0.5 and t=0.1, 0.2, 0.5. In this case, the tran-
sition from unimodal to bimodal behavior through a transient
trimodal regime is apparent.
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FIG. 3. The marginal conditional probability P(x,t), as a
function of the scaled variable x /v,t, for fixed time, t=0.5, and
€=1.0, 0.6, 0.3. The transition from unimodal to bimodal be-
havior as a function of € is clearly seen.
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and to analyze their whole temporal evolution. As a by-
product of this global result, we have also found that a
transient trimodality in P (x,t) occurs between the unimo-
dal and the bimodal regimes. As a matter of fact, the
fingerprints of trimodality are already seen in the unimo-
dal distribution for short times. ,

In Fig. 3, P(x,t) is plotted for a fixed time and various
values of €. Varying € from large to small values, the
transition between unimodal, trimodal, and bimodal be-
haviors is apparent.

As seen in Fig. 3, the critical point €, for the oc-
currence of the transition between the unimodal and the
bimodal regime is not clearly defined. This is due to the
existence of the intermediate trimodal regime which
diffuses the transition. Indeed, in the critical region, the
maximum of the unimodal distribution becomes more
and more flat before the appearance of the three humps.
As a criterion for the determination of €., we have
chosen the limit value for which no trimodal behavior
arises as time elapses, giving €, ~0.87. In order to relate
our parameter € to the exponent 3 in the power-law shear
velocity profile [5], we required that the deterministic be-
havior of a particle initially situated at the origin should
yield the same time to reach the point y =1 in both

descriptions. This gives a good agreement with the criti-
cal value obtained for 8, by numerical means in Ref. [6].

A main aspect of our results is the appearance of the
intermediate trimodal regime, taking place between the
unimodal and the bimodal one, when € < €,. An extensive
numerical analysis of P(x,t) suggests that this transient
state occurs systematically and is not restricted to partic-
ular values of the parameters. This fact seems to be of a
more general character, in the sense that such transient
trimodal behavior also appears in other bistabilitylike
problems [11].

A deeper analysis of the approximations completed to
obtain Eq. (10), as well as the way to overcome them, is
underway. A better comparison between this piecewise-
linearized velocity profile and the power-law one, based
on numerical simulations of this convection-diffusion
problem, will also be the subject of further work [8].
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